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11.9 The field of a permanent magnet

The uniformly polarized spheres and rods we talked about in Chapter 10
are seldom seen, even in the laboratory. Frozen-in electric polarization
can occur in some substances, although it is usually disguised by some
accumulation of free charge. To make Fig. 11.3(a), which shows how the
field of a polarized rod would look, it was necessary to use two charged
disks. On the other hand, materials with permanent magnetic polariza-
tion, that is, permanent magnetization, are familiar and useful. Perma-
nent magnets can be made from many alloys and compounds of ferro-
magnetic substances. What makes this possible is a question we leave
for Section 11.11, where we dip briefly into the physics of ferromag-
netism. In this section, taking the existence of permanent magnets for
granted, we want to study the magnetic field B of a uniformly magne-
tized cylindrical rod and compare it carefully with the electric field E of
a uniformly polarized rod of the same shape.

Figure 11.22 shows each of these solid cylinders in cross section.
The polarization, in each case, is parallel to the axis, and it is uniform.
That is, the polarization P and the magnetization M have uniform mag-
nitude and direction everywhere within their respective cylinders. In the
magnetic case this implies that every cubic millimeter of the permanent
magnet has the same number of lined-up electron spins, pointing in the
same direction. (A very good approximation to this can be achieved with
modern permanent magnet materials.)

By the field inside the cylinder we mean, of course, the macro-
scopic field defined as the space average of the microscopic field. With
this understanding, we show in Fig. 11.22 the field lines both inside and

(a) (b)

Figure 11.22.

(a) The electric field E outside and inside a

uniformly polarized cylinder. (b) The

magnetic

field B outside and inside a uniformly
magnetized cylinder. In each case, the interior

field shown is the macroscopic field,

that is, the

local average of the atomic or microscopic field.
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outside the rods. By the way, these rods are not supposed to be near one
another; we only put the diagrams together for convenient comparison.
Each rod is isolated in otherwise field-free space. (Which do you think
would more seriously disturb the field of the other, if they were close
together?)

Outside the rods the fields E and B look alike. In fact the field lines
follow precisely the same course. That should not surprise you if you
recall that the electric dipole and the magnetic dipole have similar far
fields. Each little chunk of the magnet is a magnetic dipole, each little
chunk of the polarized rod (sometimes called an electrer) is an electric
dipole, and the field outside is the superposition of all their far fields.

The field B, inside and out, is the same as that of a cylindrical sheath
of current. In fact, if we were to wind very evenly, on a cardboard cylin-
der, a single-layer solenoid of fine wire, we could hook a battery up to it
and duplicate the exterior and interior field B of the permanent magnet.
(The coil would get hot and the battery would run down, whereas elec-
tron spins provide the current free and frictionless!) The electric field E,
both inside and outside the polarized rod, is that of two disks of charge,
one at each end of the cylinder.

Observe that the interior fields E and B are essentially different in
form: B points to the right, is continuous at the ends of the cylinder,
and suffers a sharp change in direction at the cylindrical surface. (These
three facts are consistent with the B field that arises from a cylindrical
sheath of current.) On the other hand, E points to the left, passes through
the cylindrical surface as if it weren’t there, but is discontinuous at the
end surfaces. (These three facts are consistent with the E field that arises
from two disks of charge.) These differences arise from the essential
difference between the “inside” of the physical electric dipole and the
“inside” of the physical magnetic dipole seen in Fig. 11.8. By physical,
we mean the ones Nature has actually provided us with.

If the external field were our only concern, we could use either pic-
ture to describe the field of our magnet. We could say that the magnetic
field of the permanent magnet arises from a layer of positive magnetic
charge — a surface density of north magnetic poles on the right-hand
end of the magnet, and a layer of negative magnetic charge, south poles,
on the other end. We could adopt a scalar potential function ¢mag, such
that B = —grad ¢mag. The potential function ¢mag would be related to
the fictitious pole density as the electric potential is related to charge
density. The simplicity of the scalar potential compared with the vector
potential is rather appealing. Moreover, the magnetic scalar potential can
be related in a very neat way to the currents that are the real source of
B, and thus one can use the scalar potential without any explicit use of
the fictitious poles. You may want to use this device if you ever have to
design magnets or calculate magnetic fields.

We must abandon the magnetic pole fiction, however, if we want to
understand the field inside the magnetic material. That the macroscopic
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magnetic field inside a permanent magnet is, in a very real sense, like
the field in Fig. 11.22(b) rather than the field in Fig. 11.22(a) has been
demonstrated experimentally by deflecting energetic charged particles in
magnetized iron, as well as by the magnetic effects on slow neutrons,
which pass even more easily through the interior of matter.

Example (Disk magnet) Figure 11.23(a) shows a small disk-shaped perma-
nent magnet, in which the magnetization is parallel to the axis of symmetry.
Although many permanent magnets take the form of bars or horseshoes made of
iron, flat disk magnets of considerable strength can be made with certain rare-
earth elements. The magnetization M is given as 1.5 - 10° joules/(tesla—m3), or
equivalently amps/meter. The magnetic moment of the electron is 9.3 - 10~
joule/tesla, so this value of M corresponds to 1.6 - 1028 lined-up electron spins
per cubic meter. The disk is equivalent to a band of current around its rim,
of surface density J =M. The rim being ¢£=0.3 cm wide, the current /
amounts to

[=7J0=M¢=(L5-10° amp/m)(3- 107> m) = 450 amps. (11.62)
This is rather more current than you draw by short-circuiting an automobile bat-
tery! The field B at any point in space, including points inside the disk, is simply
the field of this band of current. For instance, near the center of the disk, B is
approximately (using Eq. (6.54))

I (471077 kgm/C?)(450C
g ol _ G em/CIE0C/S _ 5 ¢.1072 tesla,
2r 2(0.01 m)

(11.63)

or 280 gauss. The approximation consists in treating the 0.3 cm wide band of cur-
rent as if it were concentrated in a single thin ring. (The corresponding approx-
imation in an electrical setup would be to treat the equivalent charge sheets as
large compared with their separation.) As for the field at a distant point, it would
be easy to compute it for the ring current, but we could also, for an approximate
calculation, proceed as we did in the electrical example. That is, we could find
the total magnetic moment of the object, and find the distant field of a single
dipole of that strength.

11.10 Free currents, and the field H

It is often useful to distinguish between bound currents and free cur-
rents. Bound currents are currents associated with molecular or atomic
magnetic moments, including the intrinsic magnetic moment of particles
with spin. These are the molecular current loops envisioned by Ampere,
the source of the magnetization we have just been considering. Free cur-
rents are ordinary conduction currents flowing on macroscopic paths —
currents that can be started and stopped with a switch and measured with
an ammeter.
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Figure 11.23.

(a) A disk uniformly magnetized parallel to its
axis. (b) Cross-sectional view of disk. (c) The
equivalent current is a band of current
amounting to 450 amps flowing around the rim
of the disk. The magnetic field B is the same as
the magnetic field of a very short solenoid, or
approximately that of a simple ring of current of
1 cm radius.
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The current density J in Eq. (11.56) is the macroscopic average of
the bound currents, so let us henceforth label it Jyound:

Jbound = curl ML (11.64)

At a surface where M is discontinuous, such as the side of the magne-
tized block in Fig. 11.17, we have a surface current density .7 which also
represents bound current.

We found that B, both outside matter and, as a space average, inside
matter, is related to Jyound just as it is to any current density. That is,
curl B = woJpoung. But that was in the absence of free currents. If we
bring these into the picture, the field they produce simply adds on to the
field caused by the magnetized matter and we have

curl B = p0(Jpound + Jtree) = oJotal- (11.65)

Let us express Jpound in terms of M, through Eq. (11.64). Then
Eq. (11.65) becomes

curl B = po(curl M) + poJfree, (11.66)
which can be rearranged as
B
curl <— — M) = Jtree- (11.67)
o

If we now define a vector function H(x, y, z) at every point in space by
the relation

H=— —-M (11.68)
Ho

then Eq. (11.67) can be written as

1)

In other words, the vector H, defined by Eq. (11.68), is related (up
to a factor of 1) to the free current in the way B is related to the total
current, bound plus free. The parallel is not complete, however, for we
always have divB = 0, whereas our vector function H does not neces-
sarily have zero divergence.

This surely has reminded you of the vector D which we introduced, a
bit grudgingly, in Chapter 10. Recall that D is related (up to a factor of ()
to the free charge as E is related to the total charge. Although we rather
disparaged D, the vector H is really useful, for a practical reason that is
worth understanding. In short, the reason is that in our two equations,
divD = pfree and curl H = Jiee, the charge density pfree is difficult to
measure, while the current density Jgee 1s €asy. Let’s look at this in more
detail.

In electrical systems, what we can easily control and measure are
the potential differences of bodies, and not the amounts of free charge
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on them. Thus we control the electric field E directly. D is out of our
direct control, and since it is not a fundamental quantity in any sense,
what happens to it is not of much concern. In magnetic systems, how-
ever, it is precisely the free currents that we can most readily control. We
lead them through wires, measure them with ammeters, channel them in
well-defined paths with insulation, and so on. We have much less direct
control, as a rule, over magnetization, and hence over B. So the auxiliary
vector H is useful, even if D is not.
The integral relation equivalent to Eq. (11.69) is

/ H.-dl = fJfree ~da = Ifree (11.70)
C N

where I is the total free current enclosed by the path C. Suppose we
wind a coil around a piece of iron and send through this coil a certain
current /, which we can measure by connecting an ammeter in series
with the coil. This is the free current, and it is the only free current in
the system. Therefore one thing we know for sure is the line integral of
H around any closed path, whether that path goes through the iron or
not. The integral depends only on the number of turns of our coil that
are linked by the path, and not on the magnetization in the iron. The
determination of M and B in this system may be rather complicated.
It helps to have singled out one quantity that we can determine quite
directly. Figure 11.24 illustrates this property of H by an example, and is a
reminder of the units we may use in a practical case. H has the same units
as B/, or equivalently the same units as M, which are amps/meter.
This is consistent with the fact that curl H equals Jfree, which has units
of amps/meter”. It is also consistent with the fact that JH - dl equals
Itree, which has units of amps.

We consider B the fundamental magnetic field vector because the
absence of magnetic charge, which we discussed in Section 11.2, implies
divB = 0 everywhere, even inside atoms and molecules. From divB = 0
it follows, as we showed in Section 11.8, that the average macroscopic
field inside matter is B, not H. The implications of this have not always
been understood or heeded in the past. However, H has the practical
advantage we have already explained. In some older books you will
find H introduced as the primary magnetic field. B is then defined as
wo(H + M), and given the name magnetic induction. Even some writ-
ers who treat B as the primary field feel obliged to call it the magnetic
induction because the name magnetic field was historically preempted
by H. This seems clumsy and pedantic. If you go into the laboratory and
ask a physicist what causes the pion trajectories in his bubble chamber to
curve, you will probably receive the answer “magnetic field,” not “mag-
netic induction.” You will seldom hear a geophysicist refer to the earth’s
magnetic induction, or an astrophysicist talk about the magnetic induc-
tion in the galaxy. We propose to keep on calling B the magnetic field.
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I=5 amp
Path (1) encloses /
Path (2) encloses 71
Path (3) encloses 21
JayH-dl =5 amp
[y H-dl =35 amp
J3H-dl =10 amp
Figure 11.24.

lllustrating the relation between free current and
the line integral of H.

On path (1) B = y1gH, so / ;) B dl = 11y (5 amp)
On paths (2) and (3) B # uyH in iron

As for H, although other names have been invented for it, we shall call it
the field H, or even the magnetic field H.

It is only the names that give trouble, not the symbols. Everyone
agrees that in the SI system the relation connecting B, M, and H is that
stated in Eq. (11.68). In empty space we have H = B/, for M must be
zero where there is no matter.

In the description of an electromagnetic wave, it is common to use
H and E, rather than B and E, for the magnetic and electric fields. For
the plane wave in free space that we studied in Section 9.4, the rela-
tion between the magnetic amplitude Hy in amps/meter and the electric
amplitude E in volts/meter involves the constant «/o/€o which has the
dimensions of resistance and the approximate value 377 ohms. For its
exact value, see Appendix E. We met this constant before in Section 9.6,
where it appeared in the expression for the power density in the plane
wave, Eq. (9.36). The condition that corresponds to Eq and By, as stated
by Eq. (9.26), becomes

Ey(volt/meter) = Hp(amp/meter) x 377 ohms. (11.71)

This makes a convenient system of units for dealing with electromagnetic
fields in vacuum whose sources are macroscopic alternating currents and
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voltages. But remember that the basic magnetic field inside matter is B,
not H, as we found in Section 11.9. That is not a matter of mere definition,
but a consequence of the absence of magnetic charge.

The way in which H is related to B and M is reviewed in Fig. 11.25,
for both the SI and the Gaussian systems of units. These relations hold
whether M is proportional to B or not. However, if M is proportional to
B, then it will also be proportional to H. In fact, the traditional definition
of the volume magnetic susceptibility yx,, is not the logically preferable
one given in Eq. (11.52), but rather

M=y,H| (fMxB), (11.72)

which we shall reluctantly adopt from here on. If x, < 1, which is
commonly the case, there is negligible difference between the two defi-
nitions; see Exercise 11.38.

The permanent magnet in Fig. 11.22(b) is an instructive example
of the relation of H to B and M. To obtain H at some point inside the
magnetized material, we have to add vectorially to B/ at that point the
vector —M. Figure 11.26 depicts this for a particular point P. It turns out
that the lines of H inside the magnet look just like the lines of E inside the
polarized cylinder of Fig. 11.22(a). The reason for this is the following.
In the permanent magnet there are no free currents at all. Consequently,
the line integral of H, according to Eq. (11.70), must be zero around any
closed path. You can see that this will be the case if the H lines look
like the E lines in Fig. 11.22(a), for we know the line integral of that
electrostatic field is zero around any closed path.

Said in a different way, if magnetic poles, rather than electric cur-
rents, really were the source of the magnetization, then the macroscopic
magnetic field inside the magnetized material would look just like the
macroscopic electric field inside the polarized material (because that
field is produced by electric poles). The similarity of magnetic polar-
ization and electric polarization would be complete. The B field in a
(hypothetical) setup with magnetic poles looks like the H field in a (real)
setup with current loops.

In the example of the permanent magnet, Eq. (11.72) does not apply.
The magnetization vector M is not proportional to H but is determined,
instead, by the previous treatment of the material. How this can come
about will be explained in the following section.

For any material in which M is proportional to H, so that Eq. (11.72)
applies as well as the basic relation, Eq. (11.68), we have

B = poH+M) = po(l + xm)H. (1L.73)

Hence B is proportional to H. The factor of proportionality, 1o(1 + xm),
is called the magnetic permeability and denoted usually by w:

B=pH | where 1= uo(l+ xm). (11.74)
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The permeability u, rather than the susceptibility x, is customarily used
in describing ferromagnetism.

11.11 Ferromagnetism

Ferromagnetism has served and puzzled man for a long time. The lode-
stone (magnetite) was known in antiquity, and the influence on history
of iron in the shape of compass needles was perhaps second only to
that of iron in the shape of swords. For a century our electrical tech-
nology depended heavily on the circumstance that one abundant metal
happens to possess this peculiar property. Nevertheless, it was only with
the development of quantum mechanics that anything like a fundamental
understanding of ferromagnetism was achieved.

We have already described some properties of ferromagnets. In a
very strong magnetic field the force on a ferromagnetic substance is in
such a direction as to pull it into a stronger field, as for paramagnetic
materials, but instead of being proportional to the product of the field
B and its gradient, the force is proportional to the gradient itself. As
we remarked at the end of Section 11.4, this suggests that, if the field
is strong enough, the magnetic moment acquired by the ferromagnet
reaches some limiting magnitude. The direction of the magnetic moment
vector must still be controlled by the field, for otherwise the force would
not always act in the direction of increasing field intensity.

In permanent magnets we observe a magnetic moment even in the
absence of any externally applied field, and it maintains its magnitude
and direction even when external fields are applied, if they are not too
strong. The field of the permanent magnet itself is always present, of
course, and you may wonder whether it could not keep its own sources
lined up. However, if you look again at Fig. 11.22(b) and Fig. 11.26, you
will notice that M is generally not parallel to either B or H. This suggests
that the magnetic dipoles must be clamped in direction by something
other than purely magnetic forces.

The magnetization observed in ferromagnetic materials is much
larger than we are used to in paramagnetic substances. Permanent mag-
nets quite commonly have fields in the range of a few thousand gauss.
A more characteristic quantity is the limiting value of the magnetization,
the magnetic moment per unit volume, that the material acquires in a
very strong field. This is called the saturation magnetization.

Example We can deduce the saturation magnetization of iron from the data in
Table 11.1. In a field with a gradient of 17 tesla/m, the force on 1 kg of iron was
4000 newtons. From Eq. (11.20), which relates the force on a dipole to the field
gradient, we find

F 4000 newtons
m = =
dB/dz 17 tesla/m

= 235 joules/tesla (for 1 kg). (11.75)

H line
B line

H=B/uy-M

Figure 11.26.

(a) The relation of B, H, and M at a point inside
the magnetized cylinder of Fig. 11.22(b).

(b) Relation of vectors at point P.
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Figure 11.27.

The orderliness of the spin directions in a small
region in a crystal of iron. Each arrow represents
the magnetic moment of one iron atom.

To get the moment per cubic meter we multiply m by the density of iron,
7800kg/ m>. The magnetization M is thus

M = (235 joules/tesla-kg) (7800 kg/m3)
= 1.83 - 10% joules/(tesla-m>). (11.76)

It is uoM, not M, that we should compare with field strengths in tesla. In the
present case, ;oM has the value of 2.3 tesla.

It is more interesting to see how many electron spin moments this magne-
tization corresponds to. Dividing M by the electron moment given in Fig. 11.14,
namely 9.3 - 10-24 joule/tesla, we get about 2 - 102 spin moments per cubic
meter. Now, 1 m? of iron contains about 102° atoms. The limiting magnetiza-
tion seems to correspond to about two lined-up spins per atom. As most of the
electrons in the atom are paired off and have no magnetic effect at all, this indi-
cates that we are dealing with substantially complete alignment of those few
electron spins in the atom’s structure that are at liberty to point in the same
direction.

A very suggestive fact about ferromagnets is this: a given ferromag-
netic substance, pure iron for example, loses its ferromagnetic proper-
ties quite abruptly if heated to a certain temperature. Above 770°C,
pure iron acts like a paramagnetic substance. Cooled below 770 °C, it
immediately recovers its ferromagnetic properties. This transition tem-
perature, called the Curie point after Pierre Curie who was one of its
early investigators, is different for different substances. For pure nickel it
is 358 °C.

What is this ferromagnetic behavior that so sharply distinguishes
iron below 770 °C from iron above 770 °C, and from copper at any tem-
perature? It is the spontaneous lining up in one direction of the atomic
magnetic moments, which implies alignment of the spin axes of certain
electrons in each iron atom. By spontaneous, we mean that no exter-
nal magnetic field need be involved. Over a region in the iron large
enough to contain millions of atoms, the spins and magnetic moments
of nearly all the atoms are pointing in the same direction. Well below the
Curie point — at room temperature, for instance, in the case of iron —
the alignment is nearly perfect. If you could magically look into the
interior of a crystal of metallic iron and see the elementary magnetic
moments as vectors with arrowheads on them, you might see something
like Fig. 11.27.

It is hardly surprising that a high temperature should destroy this
neat arrangement. Thermal energy is the enemy of order, so to speak.
A crystal, an orderly arrangement of atoms, changes to a liquid, a much
less orderly arrangement, at a sharply defined temperature, the melting
point. The melting point, like the Curie point, is different for different
substances. Let us concentrate here on the ordered state itself. Two or
three questions are obvious.
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Question 1 What makes the spins line up and keeps them lined up?

Question 2 How, if there is no external field present, can the spins
choose one direction rather than another? Why didn’t all the moments
in Fig. 11.27 point down, or to the right, or to the left?

Question 3 If the atomic moments are all lined up, why isn’t every piece
of iron at room temperature a strong magnet?

The answers to these three questions will help us to understand, in
a general way at least, the behavior of ferromagnetic materials when
an external field, neither very strong nor very weak, is applied. That
includes a very rich variety of phenomena that we haven’t even
described yet.

Answer 1 For some reason connected with the quantum mechanics of
the structure of the iron atom, it is energetically favorable for the spins
of adjacent iron atoms to be parallel. This is not due to their magnetic
interaction. It is a stronger effect than that, and moreover it favors parallel
spins whether like this 11 or like this —— (dipole interactions don’t
work that way — see Exercise 10.29). Now if atom A (Fig. 11.28) wants
to have its spin in the same direction as that of its neighbors, atoms B, C,
D, and E, and each of them prefers to have its spin in the same direction
as the spin of its neighbors, including atom A, you can readily imagine
that if a local majority ever develops there will be a strong tendency to
“make it unanimous,” and then the fad will spread.

Answer 2 Accident somehow determines which of the various equivalent
directions in the crystal is chosen, if we commence from a disordered
state — as, for example, if the iron is cooled through its Curie point
without any external field applied. Pure iron consists of body-centered
cubic crystals. Each atom has eight nearest neighbors. The symmetry
of the environment imposes itself on every physical aspect of the atom,
including the coupling between spins. In iron the cubic axes happen to
be the axes of easiest magnetization. That is, the spins like to point in
the same direction, but they like it even better if that direction is one of
the six directions X, +y, +z (Fig. 11.29). This is important because it
means that the spins cannot easily swivel around en masse from one of
the easy directions to an equivalent one at right angles. To do so, they
would have to swing through less favorable orientations on the way. It
is just this hindrance that makes permanent magnets possible.

Answer 3 An apparently unmagnetized piece of iron is actually com-
posed of many domains, in each of which the spins are all lined up one
way, but in a direction different from that of the spins in neighboring
domains. On the average over the whole piece of “unmagnetized” iron,
all directions are equally represented, so no large-scale magnetic field
results. Even in a single crystal the magnetic domains establish them-
selves. The domains are usually microscopic in the everyday sense of the
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Figure 11.28.

An atom A and its nearest neighbors in the
crystal lattice. (Of course, the lattice is really
three-dimensional.)

[

“Easy” directions

X

Figure 11.29.

In iron the energetically preferred direction of
magnetization is along a cubic axis of the
crystal.
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Figure 11.30.

Possible arrangement of magnetic domains in
a single uniform crystal of iron.
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Figure 11.31.

Arrangement for investigating the relation
between B and M, or B and H, in a
ferromagnetic material.

word. In fact, they can be made visible under a low-power microscope.
That is still enormous, of course, on an atomic scale, so a magnetic
domain typically includes billions of elementary magnetic moments.
Figure 11.30 depicts a division into domains. The division comes about
because it is cheaper in energy than an arrangement with all the spins
pointing in one direction. The latter arrangement would be a permanent
magnet with a strong field extending out into the space around it. The
energy stored in this exterior field is larger than the energy needed
to turn some small fraction of the spins in the crystal, namely those
at a domain boundary, out of line with their immediate neighbors.
The domain structure is thus the outcome of an energy-minimization
contest.

If we wind a coil of wire around an iron rod, we can apply a mag-
netic field to the material by passing a current through the wire. In this
field, moments pointing parallel to the field will have a lower energy
than those pointing antiparallel, or in some other direction. This favors
some domains over others; those that happen to have a favorably ori-
ented moment direction’ will tend to grow at the expense of the others,
if that is possible. A domain grows like a club, that is, by expanding its
membership. This happens at the boundaries. Spins belonging to an unfa-
vored domain, but located next to the boundary with a favored domain,
simply switch allegiance by adopting the favored direction. That merely
shifts the domain boundary, which is nothing more than the dividing
surface between the two classes of spins. This happens rather easily
in single crystals. That is, a very weak applied field can bring about,
through boundary movement, a very large domain growth, and hence a
large overall change in magnetization. Depending on the grain structure
of the material, however, the movement of domain boundaries can be
difficult.

If the applied field does not happen to lie along one of the “easy”
directions (in the case of a cubic crystal, for example), the exhaustion
of the unfavored domains still leaves the moments not pointing exactly
parallel to the field. It may now take a considerably stronger field to pull
them into line with the field direction so as to create, finally, the maxi-
mum magnetization possible.

Let us look at the large-scale consequences of this, as they appear
in the magnetic behavior of a piece of iron under various applied fields.
A convenient experimental arrangement is an iron torus, around which
we wind two coils (Fig. 11.31). This affords a practically uniform field
within the iron, with no end effects to complicate matters. By measuring

7 We tend to use spins and moments almost interchangeably in this discussion. The
moment is an intrinsic aspect of the spin, and if one is lined up so is the other. To be
meticulous, we should remind the reader that in the case of the electron the magnetic
moment and angular momentum vectors point in opposite directions (Fig. 11.14).
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the voltage induced in one of the coils, we can determine changes in flux
®, and hence in B inside the iron. If we keep track of the changes in B,
starting from B = 0, we always know what B is. A current through the
other coil establishes H, which we take as the independent variable. If
we know B and H, we can always compute M. It is more usual to plot
B rather than M, as a function of H. A typical B-H curve for iron is
shown in Fig. 11.32. Note the different units on the axes; B is measured
in tesla while H is measured in amps/meter. If there were no iron in the
coil, B would equal poH, so H = 1 amp/meter would be worth exactly
B = 47 - 1077 tesla. Or equivalently, H = 300 amps/meter would yield
B ~ 4-10* tesla. But with the iron present, the resulting B field is
much larger. We see from the figure that when H = 300 amps/meter, B
has risen to more than 1 tesla. Of course, B and H here refer to an average
throughout the whole iron ring; the fine domain structure as such never
exhibits itself.

Starting with unmagnetized iron, B=0 and H =0, increasing H
causes B to rise in a conspicuously nonlinear way, slowly at first, then
more rapidly, then very slowly, finally flattening off. What actually
becomes constant in the limit is not B but M. In this graph, however, since
M =B/uo—H, and H < B/ 110, the difference between B and oM is not
appreciable.

The lower part of the B-H curve is governed by the motion of domain
boundaries, that is, by the growth of “right-pointing” domains at the
expense of “wrong-pointing” domains. In the upper flattening part of the
curve, the atomic moments are being pulled by “brute force” into line
with the field. The iron here is an ordinary polycrystalline metal, so only
a small fraction of the microcrystals will be fortunate enough to have an
easy direction lined up with the field direction.

If we now slowly decrease the current in the coil, thus lowering H,
the curve does not retrace itself. Instead, we find the behavior given by
the dashed curve in Fig. 11.32. This irreversibility is called hysteresis.
It is largely due to the domain boundary movements being partially irre-
versible. The reasons are not obvious from anything we have said, but are
well understood by physicists who work on ferromagnetism. The irre-
versibility is a nuisance, and a cause of energy loss in many technical
applications of ferromagnetic materials — for instance, in alternating-
current transformers. But it is indispensable for permanent magnetiza-
tion, and for such applications, one wants to enhance the irreversibility.
Figure 11.33 shows the corresponding portion of the B-H curve for a
good permanent magnet alloy. Note that H has to become about 50,000
amps/meter in the reverse direction before B is reduced to zero. If the
coil is simply switched off and removed, we are left with B at 1.3 tesla,
called the remanence. Since H is zero, this is essentially the same as
uoM. The alloy has acquired a permanent magnetization, that is, one
that will persist indefinitely if it is exposed only to weak magnetic fields.
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Magnetization curve for fairly pure iron. The
dashed curve is obtained as H is reduced from
a high positive value.
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Alnico V is an alloy of aluminum, nickel, and
cobalt that is used for permanent magnets.
Compare this portion of its magnetization curve
with the corresponding portion of the
characteristic for a “soft” magnetic material,
shown in Fig. 11.32.
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All the information that is stored on magnetic tapes and disks owes its
permanence to this physical phenomenon.



6.3 The Auxiliary Field H 279

6.3 @ THE AUXILIARY FIELD H

6.3.1 @ Ampere’s Law in Magnetized Materials

In Sect. 6.2, we found that the effect of magnetization is to establish bound cur-
rents J, = V x M within the material and K, = M x n on the surface. The field
due to magnetization of the medium is just the field produced by these bound cur-
rents. We are now ready to put everything together: the field attributable to bound
currents, plus the field due to everything else—which I shall call the free current.
The free current might flow through wires imbedded in the magnetized substance
or, if the latter is a conductor, through the material itself. In any event, the total
current can be written as

J=J,+17;. (6.17)

There is no new physics in Eq. 6.17; it is simply a convenience to separate the
current into these two parts, because they got there by quite different means: the
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free current is there because somebody hooked up a wire to a battery—it involves
actual transport of charge; the bound current is there because of magnetization—it
results from the conspiracy of many aligned atomic dipoles.

In view of Eqs. 6.13 and 6.17, Ampere’s law can be written

1
M—(VXB)ZJZJf‘+Jb=Jf+(VXM)a
0

or, collecting together the two curls:

1

V x (—B—M) =J;.
H“o

The quantity in parentheses is designated by the letter H:

H

1
—B - M. (6.18)
Mo

In terms of H, then, Ampere’s law reads

VxH=J;, (6.19)

or, in integral form,

7§ H-dl=1I,, (6.20)

where I is the total free current passing through the Amperian loop.

H plays a role in magnetostatics analogous to D in electrostatics: Just as D
allowed us to write Gauss’s law in terms of the free charge alone, H permits us to
express Ampere’s law in terms of the free current alone—and free current is what
we control directly. Bound current, like bound charge, comes along for the ride—
the material gets magnetized, and this results in bound currents; we cannot turn
them on or off independently, as we can free currents. In applying Eq. 6.20, all
we need to worry about is the free current, which we know about because we put
it there. In particular, when symmetry permits, we can calculate H immediately
from Eq. 6.20 by the usual Ampere’s law methods. (For example, Probs. 6.7 and
6.8 can be done in one line by noting that H = 0.)

Example 6.2. A long copper rod of radius R carries a uniformly distributed
(free) current / (Fig. 6.19). Find H inside and outside the rod.

Solution

Copper is weakly diamagnetic, so the dipoles will line up opposite to the field.
This results in a bound current running antiparallel to /, within the wire, and
parallel to I along the surface (Fig. 6.20). Just how great these bound currents will
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be we are not yet in a position to say—but in order to calculate H, it is sufficient
to realize that all the currents are longitudinal, so B, M, and therefore also H, are
circumferential. Applying Eq. 6.20 to an Amperian loop of radius s < R,

2

HQrs) =1, =12
TS) = =1—-,
fenc 7TR2
so, inside the wire,
i N
Outside the wire
I -
H=—¢ (s > R). (6.22)
21s

In the latter region (as always, in empty space) M = 0, so

I -
B=pH=2"¢ (=R,
27s

the same as for a nonmagnetized wire (Ex. 5.7). Inside the wire B cannot be
determined at this stage, since we have no way of knowing M (though in practice
the magnetization in copper is so slight that for most purposes we can ignore it
altogether).

As it turns out, H is a more useful quantity than D. In the laboratory, you
will frequently hear people talking about H (more often even than B), but you
will never hear anyone speak of D (only E). The reason is this: To build an
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electromagnet you run a certain (free) current through a coil. The current is the
thing you read on the dial, and this determines H (or at any rate, the line in-
tegral of H); B depends on the specific materials you used and even, if iron is
present, on the history of your magnet. On the other hand, if you want to set up
an electric field, you do not plaster a known free charge on the plates of a par-
allel plate capacitor; rather, you connect them to a battery of known voltage. It’s
the potential difference you read on your dial, and that determines E (or rather,
the line integral of E); D depends on the details of the dielectric you’re using. If
it were easy to measure charge, and hard to measure potential, then you’d find
experimentalists talking about D instead of E. So the relative familiarity of H,
as contrasted with D, derives from purely practical considerations; theoretically,
they’re on an equal footing.

Many authors call H, not B, the “magnetic field.” Then they have to invent a
new word for B: the “flux density,” or magnetic “induction” (an absurd choice,
since that term already has at least two other meanings in electrodynamics). Any-
way, B is indisputably the fundamental quantity, so I shall continue to call it the
“magnetic field,” as everyone does in the spoken language. H has no sensible
name: just call it “H.”’

Problem 6.12 An infinitely long cylinder, of radius R, carries a “frozen-in” magne-
tization, parallel to the axis,

M = ksz,

where k is a constant and s is the distance from the axis; there is no free current
anywhere. Find the magnetic field inside and outside the cylinder by two different
methods:

(a) As in Sect. 6.2, locate all the bound currents, and calculate the field they
produce.

(b) Use Ampere’s law (in the form of Eq. 6.20) to find H, and then get B from
Eq. 6.18. (Notice that the second method is much faster, and avoids any explicit
reference to the bound currents.)

Problem 6.13 Suppose the field inside a large piece of magnetic material is By, so
that Hy = (1/110)Bo — M, where M is a “frozen-in” magnetization.

(a) Now a small spherical cavity is hollowed out of the material (Fig. 6.21). Find
the field at the center of the cavity, in terms of By and M. Also find H at the
center of the cavity, in terms of Hy and M.

(b) Do the same for a long needle-shaped cavity running parallel to M.
(c¢) Do the same for a thin wafer-shaped cavity perpendicular to M.
For those who disagree, I quote A. Sommerfeld’s Electrodynamics (New York: Academic Press,

1952), p. 45: “The unhappy term ‘magnetic field” for H should be avoided as far as possible. It seems
to us that this term has led into error none less than Maxwell himself ...”
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Assume the cavities are small enough so M, By, and Hj are essentially constant.
Compare Prob. 4.16. [Hint: Carving out a cavity is the same as superimposing an
object of the same shape but opposite magnetization.]

6.3.2 M A Deceptive Parallel

Equation 6.19 looks just like Ampere’s original law (Eq. 5.56), except that the
total current is replaced by the free current, and B is replaced by uoH. As in the
case of D, however, I must warn you against reading too much into this corre-
spondence. It does not say that uoH is “just like B, only its source is J ; instead of
J.” For the curl alone does not determine a vector field—you must also know the
divergence. And whereas V - B = 0, the divergence of H is not, in general, zero.
In fact, from Eq. 6.18

V.H=-V-M. (6.23)

Only when the divergence of M vanishes is the parallel between B and poH
faithful.

If you think I'm being pedantic, consider the example of the bar magnet—a
short cylinder of iron that carries a permanent uniform magnetization M parallel
to its axis. (See Probs. 6.9 and 6.14.) In this case there is no free current any-
where, and a naive application of Eq. 6.20 might lead you to suppose that H = 0,
and hence that B = oM inside the magnet and B = 0 outside, which is non-
sense. It is quite true that the curl of H vanishes everywhere, but the divergence
does not. (Can you see where V - M # 07?) Advice: When you are asked to find
B or H in a problem involving magnetic materials, first look for symmetry. If the
problem exhibits cylindrical, plane, solenoidal, or toroidal symmetry, then you
can get H directly from Eq. 6.20 by the usual Ampere’s law methods. (Evidently,
in such cases V - M is automatically zero, since the free current alone determines
the answer.) If the requisite symmetry is absent, you’ll have to think of another
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approach, and in particular you must not assume that H is zero just because there
is no free current in sight.

6.3.3 B Boundary Conditions

The magnetostatic boundary conditions of Sect. 5.4.2 can be rewritten in terms of
H and the free current. From Eq. 6.23 it follows that

Hatove - Hbtlow = _(M:}_Jove - Mbtlow)’ (624)
while Eq. 6.19 says
Hlbove - Hﬂelow = Kf x 1. (6.25)

In the presence of materials, these are sometimes more useful than the correspond-
ing boundary conditions on B (Eqgs. 5.74 and 5.76):
Biiove — Bisjow = 0, (6.26)

above

and

_gl

below

B,

above

= 11o(K x 1). (6.27)

You might want to check them, for Ex. 6.2 or Prob. 6.14.

Problem 6.14 For the bar magnet of Prob. 6.9, make careful sketches of M, B, and
H, assuming L is about 2a. Compare Prob. 4.17.

Problem 6.15 If J; = 0 everywhere, the curl of H vanishes (Eq. 6.19), and we can
express H as the gradient of a scalar potential W:

H=-VWw.
According to Eq. 6.23, then,
VW = (V-M),

so W obeys Poisson’s equation, with V - M as the “source.” This opens up all the
machinery of Chapter 3. As an example, find the field inside a uniformly magne-
tized sphere (Ex. 6.1) by separation of variables. [Hint: V - M = 0 everywhere ex-
cept at the surface (r = R), so W satisfies Laplace’s equation in the regions r < R
and r > R;use Eq. 3.65, and from Eq. 6.24 figure out the appropriate boundary
condition on W]

6.4 B LINEAR AND NONLINEAR MEDIA

6.4.1 @ Magnetic Susceptibility and Permeability

In paramagnetic and diamagnetic materials, the magnetization is sustained by the
field; when B is removed, M disappears. In fact, for most substances the mag-
netization is proportional to the field, provided the field is not too strong. For
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notational consistency with the electrical case (Eq. 4.30), I should express the
proportionality thus:

1
M = —x,,B (incorrect!). (6.28)
H“o

But custom dictates that it be written in terms of H, instead of B:

M =y, H. (6.29)

The constant of proportionality yx,, is called the magnetic susceptibility; it is a
dimensionless quantity that varies from one substance to another—positive for
paramagnets and negative for diamagnets. Typical values are around 107> (see
Table 6.1).

Materials that obey Eq. 6.29 are called linear media. In view of Eq. 6.18,

B = pno(H+M) = uo(l + xn)H, (6.30)
for linear media. Thus B is also proportional to H:®
B = uH, (6.31)
where
w = po(l + xm)- (6.32)

w is called the permeability of the material.’ In a vacuum, where there is no
matter to magnetize, the susceptibility x,, vanishes, and the permeability is 1.
That’s why 1 is called the permeability of free space.

Material Susceptibility ~Material Susceptibility
Diamagnetic: Paramagnetic:

Bismuth —1.7 x 107*  Oxygen (0,) 1.7 x 107°
Gold —3.4 %107  Sodium 8.5 x 1076
Silver —2.4 x 107 Aluminum 22 x 1073
Copper —9.7x 107®  Tungsten 7.0 x 1073
Water —9.0 x 107®  Platinum 2.7 x 107*
Carbon Dioxide —1.1 x 107  Liquid Oxygen 3.9 x 1073

(—=200° C)

Hydrogen (H;)  —2.1 x 10™°  Gadolinium 4.8 x 107!

TABLE 6.1 Magnetic Susceptibilities (unless otherwise specified, values are for 1 atm,
20° C). Data from Handbook of Chemistry and Physics, 91st ed. (Boca Raton: CRC Press,
Inc., 2010) and other references.

8Physically, therefore, Eq. 6.28 would say exactly the same as Eq. 6.29, only the constant x,, would
have a different value. Equation 6.29 is a little more convenient, because experimentalists find it
handier to work with H than B.

°If you factor out 119, what's left is called the relative permeability: 1, = 1 + x,, = 1t/ /0. By the
way, formulas for H in terms of B (Eq. 6.31, in the case of linear media) are called constitutive
relations, just like those for D in terms of E.
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Example 6.3. An infinite solenoid (n turns per unit length, current /) is filled
with linear material of susceptibility y,,. Find the magnetic field inside the
solenoid.

SIS

AR AR

(

=

FIGURE 6.22

Solution

Since B is due in part to bound currents (which we don’t yet know), we cannot
compute it directly. However, this is one of those symmetrical cases in which we
can get H from the free current alone, using Ampere’s law in the form of Eq. 6.20:

H=nlz
(Fig. 6.22). According to Eq. 6.31, then,
B = wo(1 + xm)nl Z

If the medium is paramagnetic, the field is slightly enhanced; if it’s diamagnetic,
the field is somewhat reduced. This reflects the fact that the bound surface current

K, =M x fi = y,,(H x i) = ,,nl ¢

is in the same direction as 7, in the former case (x,, > 0), and opposite in the
latter (x,, < 0).

You might suppose that linear media escape the defect in the parallel between
B and H: since M and H are now proportional to B, does it not follow that
their divergence, like B’s, must always vanish? Unfortunately, it does not;'° at
the boundary between two materials of different permeability, the divergence of
M can actually be infinite. For instance, at the end of a cylinder of linear para-
magnetic material, M is zero on one side but not on the other. For the “Gaussian
pillbox” shown in Fig. 6.23, M - da # 0, and hence, by the divergence theorem,
V - M cannot vanish everywhere within it.

10Formally, V-H=V. (ﬁB) = iV -B+B.-V (i) =B.-V (i), so H is not divergenceless (in
general) at points where y is changing.
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Incidentally, the volume bound current density in a homogeneous linear mate-
rial is proportional to the free current density:

Jo =V XM=V X (nl) = xudys. (6.33)

In particular, unless free current actually flows through the material, all bound
current will be at the surface.

Problem 6.16 A coaxial cable consists of two very long cylindrical tubes, separated
by linear insulating material of magnetic susceptibility y,,. A current / flows down
the inner conductor and returns along the outer one; in each case, the current dis-
tributes itself uniformly over the surface (Fig. 6.24). Find the magnetic field in the
region between the tubes. As a check, calculate the magnetization and the bound
currents, and confirm that (together, of course, with the free currents) they generate
the correct field.

FIGURE 6.24

Problem 6.17 A current / flows down a long straight wire of radius a. If the wire
is made of linear material (copper, say, or aluminum) with susceptibility x,,, and
the current is distributed uniformly, what is the magnetic field a distance s from the
axis? Find all the bound currents. What is the ner bound current flowing down the
wire?

Problem 6.18 A sphere of linear magnetic material is placed in an otherwise uni-
form magnetic field By. Find the new field inside the sphere. [Hint: See Prob. 6.15
or Prob. 4.23.]

Problem 6.19 On the basis of the naive model presented in Sect. 6.1.3, estimate
the magnetic susceptibility of a diamagnetic metal such as copper. Compare your
answer with the empirical value in Table 6.1, and comment on any discrepancy.
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6.4.2 M Ferromagnetism

In a linear medium, the alignment of atomic dipoles is maintained by a magnetic
field imposed from the outside. Ferromagnets—which are emphatically not lin-
ear!' —require no external fields to sustain the magnetization; the alignment is
“frozen in.” Like paramagnetism, ferromagnetism involves the magnetic dipoles
associated with the spins of unpaired electrons. The new feature, which makes fer-
romagnetism so different from paramagnetism, is the interaction between nearby
dipoles: In a ferromagnet, each dipole “likes” to point in the same direction as its
neighbors. The reason for this preference is essentially quantum mechanical, and
I shall not endeavor to explain it here; it is enough to know that the correlation is
so strong as to align virtually 100% of the unpaired electron spins. If you could
somehow magnify a piece of iron and “see” the individual dipoles as tiny arrows,
it would look something like Fig. 6.25, with all the spins pointing the same way.

But if that is true, why isn’t every wrench and nail a powerful magnet? The
answer is that the alignment occurs in relatively small patches, called domains.
Each domain contains billions of dipoles, all lined up (these domains are actually
visible under a microscope, using suitable etching techniques—see Fig. 6.26), but
the domains themselves are randomly oriented. The household wrench contains an
enormous number of domains, and their magnetic fields cancel, so the wrench as
a whole is not magnetized. (Actually, the orientation of domains is not completely
random; within a given crystal, there may be some preferential alignment along
the crystal axes. But there will be just as many domains pointing one way as
the other, so there is still no large-scale magnetization. Moreover, the crystals
themselves are randomly oriented within any sizable chunk of metal.)

How, then, would you produce a permanent magnet, such as they sell in
toy stores? If you put a piece of iron into a strong magnetic field, the torque
N = m x B tends to align the dipoles parallel to the field. Since they like to stay
parallel to their neighbors, most of the dipoles will resist this torque. However,

FIGURE 6.25

"n this sense, it is misleading to speak of the susceptibility or permeability of a ferromagnet. The
terms are used for such materials, but they refer to the proportionality factor between a differential
increase in H and the resulting differential change in M (or B); moreover, they are not constants, but
functions of H.
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Ferromagnetic domains. (Photo courtesy of R. W. DeBlois)

FIGURE 6.26

at the boundary between two domains, there are competing neighbors, and the
torque will throw its weight on the side of the domain most nearly parallel to the
field; this domain will win some converts, at the expense of the less favorably ori-
ented one. The net effect of the magnetic field, then, is to move the domain bound-
aries. Domains parallel to the field grow, and the others shrink. If the field is strong
enough, one domain takes over entirely, and the iron is said to be saturated.

It turns out that this process (the shifting of domain boundaries in response to
an external field) is not entirely reversible: When the field is switched off, there
will be some return to randomly oriented domains, but it is far from complete—
there remains a preponderance of domains in the original direction. You now have
a permanent magnet.

A simple way to accomplish this, in practice, is to wrap a coil of wire around
the object to be magnetized (Fig. 6.27). Run a current / through the coil; this pro-
vides the external magnetic field (pointing to the left in the diagram). As you in-
crease the current, the field increases, the domain boundaries move, and the mag-
netization grows. Eventually, you reach the saturation point, with all the dipoles
aligned, and a further increase in current has no effect on M (Fig. 6.28, point b).

Now suppose you reduce the current. Instead of retracing the path back to
M = 0, there is only a partial return to randomly oriented domains; M decreases,
but even with the current off there is some residual magnetization (point c¢). The
wrench is now a permanent magnet. If you want to eliminate the remaining mag-
netization, you’ll have to run a current backwards through the coil (a negative I).
Now the external field points to the right, and as you increase I (negatively),
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M drops down to zero (point d). If you turn [ still higher, you soon reach sat-
uration in the other direction—all the dipoles now pointing to the right (e). At
this stage, switching off the current will leave the wrench with a permanent mag-
netization to the right (point f). To complete the story, turn / on again in the
positive sense: M returns to zero (point g), and eventually to the forward satura-
tion point (b).

The path we have traced out is called a hysteresis loop. Notice that the mag-
netization of the wrench depends not only on the applied field (that is, on I), but
also on its previous magnetic “history.”'> For instance, at three different times in
our experiment the current was zero (a, ¢, and f), yet the magnetization was dif-
ferent for each of them. Actually, it is customary to draw hysteresis loops as plots
of B against H, rather than M against /. (If our coil is approximated by a long
solenoid, with n turns per unit length, then H = n/, so H and [ are proportional.
Meanwhile, B = uo(H + M), but in practice M is huge compared to H, so to all
intents and purposes B is proportional to M.)

To make the units consistent (teslas), I have plotted (uoH) horizontally
(Fig. 6.29); notice, however, that the vertical scale is 10* times greater than the
horizontal one. Roughly speaking, 1oH is the field our coil would have produced
in the absence of any iron; B is what we actually got, and compared to poH, it is
gigantic. A little current goes a long way, when you have ferromagnetic materials

M

(Saturation)
c b

/ I

f (Permanent
Magnet)

(Permanent
Magnet)

/.

e
(Saturation)

FIGURE 6.28

12Etymologically, the word hysteresis has nothing to do with the word history—nor with the word
hysteria. It derives from a Greek verb meaning “lag behind.”
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around. That’s why anyone who wants to make a powerful electromagnet will
wrap the coil around an iron core. It doesn’t take much of an external field to
move the domain boundaries, and when you do that, you have all the dipoles in
the iron working with you.

One final point about ferromagnetism: It all follows, remember, from the
fact that the dipoles within a given domain line up parallel to one another. Ran-
dom thermal motions compete with this ordering, but as long as the temperature
doesn’t get too high, they cannot budge the dipoles out of line. It’s not surprising,
though, that very high temperatures do destroy the alignment. What is surprising
is that this occurs at a precise temperature (770° C, for iron). Below this temper-
ature (called the Curie point), iron is ferromagnetic; above, it is paramagnetic.
The Curie point is rather like the boiling point or the freezing point in that there is
no gradual transition from ferro- to para-magnetic behavior, any more than there
is between water and ice. These abrupt changes in the properties of a substance,
occurring at sharply defined temperatures, are known in statistical mechanics as
phase transitions.

Problem 6.20 How would you go about demagnetizing a permanent magnet (such
as the wrench we have been discussing, at point ¢ in the hysteresis loop)? That is,
how could you restore it to its original state, with M = 0 at I = 0?

Problem 6.21

(a) Show that the energy of a magnetic dipole in a magnetic field B is

U=-m-B. (6.34)

[Assume that the magnitude of the dipole moment is fixed, and all you have
to do is move it into place and rotate it into its final orientation. The energy re-
quired to keep the current flowing is a different problem, which we will confront
in Chapter 7.] Compare Eq. 4.6.
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FIGURE 6.30

(b) Show that the interaction energy of two magnetic dipoles separated by a dis-
placement r is given by

1 A A

= " [mym, = 3am; - B)(m, - B (6.35)

4 1

Compare Eq. 4.7.

(c) Express your answer to (b) in terms of the angles 0, and 6, in Fig. 6.30, and use
the result to find the stable configuration two dipoles would adopt if held a fixed
distance apart, but left free to rotate.

(d) Suppose you had a large collection of compass needles, mounted on pins at
regular intervals along a straight line. How would they point (assuming the
earth’s magnetic field can be neglected)? [A rectangular array of compass nee-
dles aligns itself spontaneously, and this is sometimes used as a demonstration
of “ferromagnetic” behavior on a large scale. It’s a bit of a fraud, however, since
the mechanism here is purely classical, and much weaker than the quantum me-
chanical exchange forces that are actually responsible for ferromagnetism.'?]

More Problems on Chapter 6

Problem 6.22 In Prob. 6.4, you calculated the force on a dipole by “brute force.”
Here’s a more elegant approach. First write B(r) as a Taylor expansion about the
center of the loop:

B(r) = B(ro) + [(r — ro) - VoIB(ro),

where ry is the position of the dipole and V denotes differentiation with respect to
ro. Put this into the Lorentz force law (Eq. 5.16) to obtain

F=1 7{ dl x [(r - Vo)B(ro)].

Or, numbering the Cartesian coordinates from 1 to 3:

3

F=1) e { fn dl_,} [Vo,Bi(xo)] .

jokiI=1

where €;j; is the Levi-Civita symbol (41 if ijk = 123, 231, or 312; —1 if ijk =
132, 213, or 321; 0 otherwise), in terms of which the cross-product can be written
(A xB);, = Zi.k:l €;jxAjBi. Use Eq. 1.108 to evaluate the integral. Note that

3
E €ijk€Ljm = 8i18km — SimOuis

Jj=1

where §;; is the Kronecker delta (Prob. 3.52).

BFor an intriguing exception, see B. Parks, Am. J. Phys. 74, 351 (2006), Section II.
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Problem 6.23 A familiar toy consists of donut-shaped permanent magnets (magne-
tization parallel to the axis), which slide frictionlessly on a vertical rod (Fig. 6.31).
Treat the magnets as dipoles, with mass m, and dipole moment m.

(a) If you put two back-to-back magnets on the rod, the upper one will “float”—the
magnetic force upward balancing the gravitational force downward. At what
height (z) does it float?

(b) If you now add a third magnet (parallel to the bottom one), what is the ratio of
the two heights? (Determine the actual number, to three significant digits.)
[Answer: (a) [3uom?/2wmyg]"*; (b) 0.8501]

Problem 6.24 Imagine two charged magnetic dipoles (charge g, dipole moment m),
constrained to move on the z axis (same as Problem 6.23(a), but without gravity).
Electrically they repel, but magnetically (if both m’s point in the z direction) they
attract.

(a) Find the equilibrium separation distance.

(b) What is the equilibrium separation for two electrons in this orientation.
[Answer: 4.72 x 1073 m.]

(c) Does there exist, then, a stable bound state of two electrons?
Problem 6.25 Notice the following parallel:

V-D=0, VXxE=0, ¢E=D-P, (no free charge);
V.-B=0, VxH=0, puoH=B- M, (nofreecurrent).

Thus, the transcription D — B, E — H, P — uoM, €y — u turns an electrostatic
problem into an analogous magnetostatic one. Use this, together with your knowl-
edge of the electrostatic results, to rederive

(a) the magnetic field inside a uniformly magnetized sphere (Eq. 6.16);

(b) the magnetic field inside a sphere of linear magnetic material in an otherwise
uniform magnetic field (Prob. 6.18);
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(c) the average magnetic field over a sphere, due to steady currents within the
sphere (Eq. 5.93).

Problem 6.26 Compare Egs. 2.15, 4.9, and 6.11. Notice that if p, P, and M are
uniform, the same integral is involved in all three:

£
/ﬁdf.

Therefore, if you happen to know the electric field of a uniformly charged object,
you can immediately write down the scalar potential of a uniformly polarized ob-
ject, and the vector potential of a uniformly magnetized object, of the same shape.
Use this observation to obtain V inside and outside a uniformly polarized sphere
(Ex. 4.2), and A inside and outside a uniformly magnetized sphere (Ex. 6.1).
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FIGURE 6.32

Problem 6.27 At the interface between one linear magnetic material and another,
the magnetic field lines bend (Fig. 6.32). Show that tan 6,/ tan 6, = u, /1, assum-
ing there is no free current at the boundary. Compare Eq. 4.68.

Problem 6.28 A magnetic dipole m is imbedded at the center of a sphere (radius
R) of linear magnetic material (permeability 1¢). Show that the magnetic field inside
the sphere (0 < r < R) is

i{%[3(m-f)?—m]+
<

2(po — 1)m
4 '

Quo + n)R?

What is the field outside the sphere?

Problem 6.29 You are asked to referee a grant application, which proposes to deter-
mine whether the magnetization of iron is due to “Ampere” dipoles (current loops)
or “Gilbert” dipoles (separated magnetic monopoles). The experiment will involve
a cylinder of iron (radius R and length L = 10R), uniformly magnetized along the
direction of its axis. If the dipoles are Ampgre-type, the magnetization is equivalent
to a surface bound current K, = M ¢; if they are Gilbert-type, the magnetization is
equivalent to surface monopole densities o, = M at the two ends. Unfortunately,
these two configurations produce identical magnetic fields, at exterior points. How-
ever, the interior fields are radically different—in the first case B is in the same
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general direction as M, whereas in the second it is roughly opposite to M. The ap-
plicant proposes to measure this internal field by carving out a small cavity and
finding the torque on a tiny compass needle placed inside.

Assuming that the obvious technical difficulties can be overcome, and that the
question itself is worthy of study, would you advise funding this experiment? If so,
what shape cavity would you recommend? If not, what is wrong with the proposal?
[Hint: Refer to Probs. 4.11, 4.16, 6.9, and 6.13.]
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